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Il. Comprehensive Summary of Significant Work Accomplished:

Mechanical metamaterials are defined as materials with overall properties that are not
normally observed in nature, such as negative effective modulus of elasticity or effective
density within a desired frequency interval. We have shown through numerical and
experimental work the possibilities and potentials of designing such materials. Our focus has
been on polymers, block copolymers and fiber-reinforced composites. The possibility of
changing the morphology of such materials over broad ranges of length scales that
subsequently can tune their overall response to stress waves or other stimuli provides novel
opportunities with broad industrial and other applications.

By carefully designing the microstructure, stress waves can be managed at a wide range of
length scales and frequencies to achieve,

e Nano to micro-structurally designed materials with controlled and tunable response



e Stress-wave redirection and focusing
o Negative effective mass and band gaps over windows of frequencies, which change or
can be changed by an external stimuli.

It is possible for the length scale (/) of the microstructure to be a tenth of the macroscale
wavelength and yet be able to affect the macroscale wave through resonance. In Figure 1
we have shown how this fact may be used to affect various length scales of dynamic
response through hierarchical design of microstructure.
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Fig. 1: Effect of resonance of the microstructure on the macroscale wavelengths.



Stress-wave redirection
By carefully controlling the spatial variation of anisotropy of the medium, stress waves can be
made to follow desired trajectories, scattering can be controlled, and energy can be focused.

Fig. 2: Wave redirection through microstructural design of anisotropy

Figure 2, showing the numerical results published by Amirkhizi et. al., 2010 [Wave Motion, Vol.
47], demonstrates that such wave redirection is possible. In the top example (Model A) we have
a homogeneous medium with a cavity. Stress wave directed at the cavity suffers scattering and
is unable to reach the transmission side. Model B is specially designed to have spatially varying
anisotropy and results in reduced scattering of the stress wave by the cavity. Numerical
predictions above have been experimentally verified at CEAM and the results are published
alongside the simulation results.

Wave redirection for controlled scattering has potential for improved protection and detection
avoidance of sensitive objects, while focusing may increase the energy harvesting efficiency by
creating high intensity nodes.



Negative effective mass and stiffness through microstructural design
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Fig. 3: Hard inclusions embedded in soft matrix: wave frequency vs. wavenumber

By carefully controlling the microstructure mechanical metamaterials can be designed to
demonstrate bandgaps at desired frequencies and frequency windows. Furthermore, where the
effective mass and stiffness are negative, one observes negative refraction, i.e. anti-parallel
phase and group velocity. This effect is elaborated in Figure 3 for a negative shear band. Our 1D
and 2D numerical designs clearly show these effects and we have also experimentally
established the reliability of our numerical predictions by observing the band structures in
ultrasonic testing.

Tunability

The band structure of layered and 2D or 3D periodic composites may be adjusted by changing
one or two architectural parameters. For example in Figure 4 we change the internal spacing of
two layers which results in significant reduction in the width of the stop band. In certain
materials, such as elastomers, such dimensional changes may be achieved by applying relatively
low pressure, therefore allowing for in-situ tuning of properties. In polyurea for example, small
hydrostatic pressure also changes the shear modulus, which also contributes to the overall
properties of the layered or 2D periodic media.
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Fig. 4: Effect of changing the location of the micro-inclusion on the dispersion curve of the composite
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Abstract: Stress-wave propagation in solids can be controlled through imposing a gradual change of
anisotropy in the material elasticity tensor. In this study, a transversely isotropic material is incorporated
with a smoothly varying axis of anisotropy. It is shown that if this axis initially coincides with the stress-
wave vector, then the energy of the plane waves would closely follow this gradually changing material
direction. A fiber-reinforced composite is used to induce the required anisotropy, and to experimentally
demonstrate the management of stress-wave energy in a desired trajectory. The material has isotropic
mass-density and is considered homogeneous at the scale of the considered wavelengths, even though
microscopically it is highly heterogeneous.

Nemat-Nasser, S., J.R. Willis, A. Srivastava and A.V. Amirkhizi, “Homogenization of periodic
elastic composites and locally resonant sonic materials,” Phys. Review. B, Vol. 83 (2011)
104103.

Abstract: A method for homogenization of an elastic composite with periodic microstructure is
presented, focusing on the Floquet-type elastic waves. The resulting homogenized frequency-dependent
elasticity and mass density then automatically satisfy the overall conservation laws and by necessity
produce the exact dispersion relations. It is also shown that the dispersion relations and the associated



field quantities can be accurately calculated using a mixed variational approach, based on the
microstructure of the associated unit cell. The method is used to calculate the dynamic effective
parameters for a layered composite by using both the exact solution and the results of the mixed
variational formulation. The exact and approximate results are shown to be in close agreement, which
makes it possible to use the approximate method for the proposed type of homogenization in cases
where an exact solution does not exist. The homogenized frequency-dependent effective parameters
give rise to the concept of dynamic Ashby charts that can be used to illustrate the effect of the
microstructural architecture on the dynamic properties of a composite. In particular, the charts vividly
display how this effective stiffness and density vary with frequency and may attain negative values
within certain frequency ranges which can be changed as desired using the microarchitecture while
keeping the volume fraction of the unit cell’s constituents constant.

Nemat-Nasser, S., and A. Srivastava, "Overall Dynamic Constitutive Relations of Micro-
structured Elastic Composites" J. of the Mech. and Phys. of Solids, submitted 11/2010.

Abstract: A method for homogenization of a heterogeneous (finite or periodic) elastic composite is
presented. It allows direct, consistent, and accurate evaluation of the averaged overall frequency-
dependent dynamic material constitutive relations. It is shown that when the spatial variation of the
field variables is restricted by a Bloch-form (Floquet-form) periodicity, then these relations together with
the overall conservation and kinematical equations accurately yield the displacement or stress
modeshapes and, necessarily, the dispersion relations. It also gives as a matter of course point-wise
solution of the elasto-dynamic field equations, to any desired degree of accuracy. The resulting overall
dynamic constitutive relations however, are general and need not be restricted by the Bloch-form
periodicity. The formulation is based on micro-mechanical modeling of a representative unit cell of the
composite proposed by Nemat-Nasser and coworkers; see, e.g., [1] and [2]. We show that, for a micro-
structured elastic composite, the overall effective mass-density and compliance (stiffness) are always
real-valued and positive, whether or not the corresponding unit cell (representative volume element
used as a unit cell) is geometrically and/or materially symmetric. The average strain and linear
momentum are however couple and the coupling constitutive parameters are always each others
complex conjugates for any heterogeneous elastic unit cell, such that the overall energy-density is
always real and positive. In this paper, we have sought to separate the overall constitutive relations
which should depend only on the composition and structure of the unit cell, from the overall field
equations which should hold for any elastic composite; i.e., we use only the local field equations and
material properties to deduce the overall constitutive relations. It is shown, by way of an example of a
bi-layered composite, that dispersion curves obtained by our method accurately produce the exact
results of Rytov [3]. The method is also used to calculate the effective parameters for a 2-layered
composite and the results are compared with those of homogenization based on the field integration of
the exact solution (Willis [4], and Nemat-Nasser et al. [5]), and certain relevant issues are clarified.
Finally the method is used to homogenize both a symmetric and a non-symmetric 4-layered composite
and the results for the symmetric case are compared with those reported by Nemat-Nasser et al. [5] as
well as the exact solution. Thus, this method provides a powerful solution and homogenization tool to
use in many cases where the unit cell contains inclusions of complex geometry.
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